V Semester B.A./B.Sc. Examination, November/December 2018 (CBCS) (2016 – 17 and Onwards) (Semester Scheme) (Fresh + Repeaters) MATHEMATICS – VI

Time: 3 Hours

Max. Marks: 70

Instruction: Answer all questions.

PART - A

1. Answer any five questions.

 $(5 \times 2 = 10)$

- a) Write Euler's equation when f is independent of y.
- b) Find the differential equation of the functional $I = \int_{X_1}^{X_2} \left[y^2 (y^2 + y^2) \right] dx$.
- c) Write the Euler's equation.
- d) Evaluate $\int_{C} (3x+y)dx + (2y-x)dy$ along y = x from (0, 0) to (10,10).
- e) Evaluate $\int_{0}^{\pi/2} \int_{0}^{a\cos\theta} r^2 dr d\theta$.
- f) Evaluate ∫∫∫xyz dxdydz .
- g) Find the area of the circle $x^2 + y^2 = a^2$ by double integration.
- h) State Stoke's theorem.

PART - B

Answer two full questions.

 $(2 \times 10 = 20)$

- 2. a) Find the extremal of the functional $I = \int_{0}^{\pi/2} \left[y^2 (y')^2 2y \sin x \right] dx$ under the end conditions $y(0) = y(\pi/2) = 0$.
 - b) Define Geodesic. Prove that geodesic on a plane is a straight line.

OR

- 3. a) If a cable hangs freely under gravity from two fixed points then show that the shape of cable is a catenary.
 - b) Solve the variational problem $\delta \int [y^2 (y')^2] dx = 0$ under the condition

$$y(0) = 0, y(\frac{\pi}{2}) = 2.$$

- 4. a) Prove that catenary is the curve which when rotated about a line generates
- b) Find the extremal of the functional $\int_{x_1}^{x_2} [12xy + (y')^2] dx$.
- 5. a) Find the extremal of the functional $\int_{0}^{1} \left[x+y+(y')^{2}\right] dx = 0$ under the conditions y(0) = 1 and y(1) = 2.
 - b) Find the extremal of the functional $\int_{0}^{1} [(y')^{2} + x^{2}] dx$ subject to the constraint $\int y dx = 2 \text{ and having end conditions } y(0) = 0 \text{ and } y(1) = 1.$

Answer two full questions.

(2×10=21

- 6. a) Evaluate $\int (x+y+z) ds$ where C is line joining the points (1, 2, 3) and (4, 5, 6) whose equations are x = 3t + 1, y = 3t + 2; z = 3t + 3.
- b) Evaluate ∬xy(x+y)dxdy over the region R bounded between the parabola $y = x^2$ and the line y = x.

7. a) Change the order of integration in $\int_{0}^{a} \int_{0}^{2\sqrt{ax}} x^2 dxdy$ and hence evaluate.

b) Evaluate $\iint \sqrt{4x^2 - y^2} \, dxdy$ where A is the area bounded by the lines y = 0. y = x and x = 1.

- 8. a) Evaluate $\int_{1}^{1} \int_{1-x^2}^{1-x^2} \sqrt{1-x^2-y^2}$ xyzdxdydz
 - b) Change into polar coordinates and evaluate | [e-(x OR
- 9. a) Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ using triple integration.
 - by changing it to spherical polar coordinates.

PART - D

Answer two full questions.

 $(2\times10=20)$

- 10. a) State and prove Green's theorem.
- BMSCW b) Using divergence theorem, evaluate $\iint (x^{\hat{i}} + y^{\hat{j}} + z^2 \hat{k}) \cdot \hat{n} ds$ where S is the closed surface bounded by the cone $x^2 + y^2 = z^2$ and the plane z = 1.
- 11. a) By using divergence theorem, evaluate $\iint \vec{F} \cdot \hat{n} ds$ where $\vec{F} = 4x \hat{i} 2y^2 \hat{j} + z^2 \hat{k}$ and S is the surface enclosing the region for which $x^2 + y^2 \le 4$ and $0 \le z \le 3$.
 - b) Evaluate $\iint \text{curl } \vec{F} \cdot \hat{n} \text{ ds by Stoke's theorem if } \vec{F} = (y-z+2)\hat{i} + (yz+4)\hat{j} xz\hat{k}$ and S is the surface of the cube $0 \le x \le 2$, $0 \le y \le 2$, $0 \le z \le 2$.
- 12. a) Using Green's theorem evaluate for the scalar line integral of $\vec{F} = (x^2 y^2)\hat{i} + 2xy\hat{j}$ over the rectangular region bounded by the lines x = 0, y = 0; x = a; y = b.

- b) Using the divergence theorem evaluate $\iint_S \vec{F} \cdot \hat{n} ds$ where $\vec{F} = (x^2 yz) \ \hat{i} + (y^2 zx) \ \hat{j} + (z^2 xy) \ \hat{k}$ over the rectangular parallelopiped OR
- 13. a) Using Green's theorem evaluate $\int_C (xy + y^2) dx + x^2 dy$ where C is the closed curve bounded by y = x and $y = x^2$.
 - b) Evaluate by Stoke's theorem $\oint yzdx + zxdy + xydz$. where C is the curve $x^2 + y^2 = 1$; $z = y^2$.

 B_{MSCW}